DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation

In real-world crowd counting applications, the crowd densities vary greatly in spatial and temporal domains. A detection based counting method will estimate crowds accurately in low density scenes, while its reliability in congested areas is downgraded... A regression based approach, on the other hand, captures the general density information in crowded regions. Without knowing the location of each person, it tends to overestimate the count in low density areas. Thus, exclusively using either one of them is not sufficient to handle all kinds of scenes with varying densities. To address this issue, a novel end-to-end crowd counting framework, named DecideNet (DEteCtIon and Density Estimation Network) is proposed. It can adaptively decide the appropriate counting mode for different locations on the image based on its real density conditions. DecideNet starts with estimating the crowd density by generating detection and regression based density maps separately. To capture inevitable variation in densities, it incorporates an attention module, meant to adaptively assess the reliability of the two types of estimations. The final crowd counts are obtained with the guidance of the attention module to adopt suitable estimations from the two kinds of density maps. Experimental results show that our method achieves state-of-the-art performance on three challenging crowd counting datasets. read more

PDF Abstract CVPR 2018 PDF CVPR 2018 Abstract


Results from the Paper

Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Crowd Counting WorldExpo’10 DecideNet Average MAE 9.23 # 9


No methods listed for this paper. Add relevant methods here