Decoding Event-related Potential from Ear-EEG Signals based on Ensemble Convolutional Neural Networks in Ambulatory Environment

3 Mar 2021  ·  Young-Eun Lee, Seong-Whan Lee ·

Recently, practical brain-computer interface is actively carried out, especially, in an ambulatory environment. However, the electroencephalography (EEG) signals are distorted by movement artifacts and electromyography signals when users are moving, which make hard to recognize human intention. In addition, as hardware issues are also challenging, ear-EEG has been developed for practical brain-computer interface and has been widely used. In this paper, we proposed ensemble-based convolutional neural networks in ambulatory environment and analyzed the visual event-related potential responses in scalp- and ear-EEG in terms of statistical analysis and brain-computer interface performance. The brain-computer interface performance deteriorated as 3-14% when walking fast at 1.6 m/s. The proposed methods showed 0.728 in average of the area under the curve. The proposed method shows robust to the ambulatory environment and imbalanced data as well.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here