Deconstructing multimodality: visual properties and visual context in human semantic processing

SEMEVAL 2019 Christopher DavisLuana BulatAnita Lilla VeroEkaterina Shutova

Multimodal semantic models that extend linguistic representations with additional perceptual input have proved successful in a range of natural language processing (NLP) tasks. Recent research has successfully used neural methods to automatically create visual representations for words... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet