Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated Exploration

Intrinsic rewards can improve exploration in reinforcement learning, but the exploration process may suffer from instability caused by non-stationary reward shaping and strong dependency on hyperparameters. In this work, we introduce Decoupled RL (DeRL) as a general framework which trains separate policies for intrinsically-motivated exploration and exploitation. Such decoupling allows DeRL to leverage the benefits of intrinsic rewards for exploration while demonstrating improved robustness and sample efficiency. We evaluate DeRL algorithms in two sparse-reward environments with multiple types of intrinsic rewards. Our results show that DeRL is more robust to varying scale and rate of decay of intrinsic rewards and converges to the same evaluation returns than intrinsically-motivated baselines in fewer interactions. Lastly, we discuss the challenge of distribution shift and show that divergence constraint regularisers can successfully minimise instability caused by divergence of exploration and exploitation policies.

PDF Abstract ICML Workshop 2021 PDF ICML Workshop 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here