DEEP ADVERSARIAL FORWARD MODEL

27 Sep 2018  ·  Morgan Funtowicz, Tomi Silander, Arnaud Sors, Julien Perez ·

Learning world dynamics has recently been investigated as a way to make reinforcement learning (RL) algorithms to be more sample efficient and interpretable. In this paper, we propose to capture an environment dynamics with a novel forward model that leverages recent works on adversarial learning and visual control. Such a model estimates future observations conditioned on the current ones and other input variables such as actions taken by an RL-agent. We focus on image generation which is a particularly challenging topic but our method can be adapted to other modalities. More precisely, our forward model is trained to produce realistic observations of the future while a discriminator model is trained to distinguish between real images and the model’s prediction of the future. This approach overcomes the need to define an explicit loss function for the forward model which is currently used for solving such a class of problem. As a consequence, our learning protocol does not have to rely on an explicit distance such as Euclidean distance which tends to produce unsatisfactory predictions. To illustrate our method, empirical qualitative and quantitative results are presented on a real driving scenario, along with qualitative results on Atari game Frostbite.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here