Deep Convolutional Transform Learning -- Extended version

2 Oct 2020  ·  Jyoti Maggu, Angshul Majumdar, Emilie Chouzenoux, Giovanni Chierchia ·

This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional transforms, our approach is able to learn a set of independent kernels at different layers. The features extracted in an unsupervised manner can then be used to perform machine learning tasks, such as classification and clustering. The learning technique relies on a well-sounded alternating proximal minimization scheme with established convergence guarantees. Our experimental results show that the proposed DCTL technique outperforms its shallow version CTL, on several benchmark datasets.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here