Deep Energy Estimator Networks

21 May 2018  ·  Saeed Saremi, Arash Mehrjou, Bernhard Schölkopf, Aapo Hyvärinen ·

Density estimation is a fundamental problem in statistical learning. This problem is especially challenging for complex high-dimensional data due to the curse of dimensionality. A promising solution to this problem is given here in an inference-free hierarchical framework that is built on score matching. We revisit the Bayesian interpretation of the score function and the Parzen score matching, and construct a multilayer perceptron with a scalable objective for learning the energy (i.e. the unnormalized log-density), which is then optimized with stochastic gradient descent. In addition, the resulting deep energy estimator network (DEEN) is designed as products of experts. We present the utility of DEEN in learning the energy, the score function, and in single-step denoising experiments for synthetic and high-dimensional data. We also diagnose stability problems in the direct estimation of the score function that had been observed for denoising autoencoders.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here