Deep Euler method: solving ODEs by approximating the local truncation error of the Euler method

21 Mar 2020  ·  Xing Shen, Xiaoliang Cheng, Kewei Liang ·

In this paper, we propose a deep learning-based method, deep Euler method (DEM) to solve ordinary differential equations. DEM significantly improves the accuracy of the Euler method by approximating the local truncation error with deep neural networks which could obtain a high precision solution with a large step size. The deep neural network in DEM is mesh-free during training and shows good generalization in unmeasured regions. DEM could be easily combined with other schemes of numerical methods, such as Runge-Kutta method to obtain better solutions. Furthermore, the error bound and stability of DEM is discussed.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here