Deep Gaussian Denoiser Epistemic Uncertainty and Decoupled Dual-Attention Fusion

12 Jan 2021  ·  Xiaoqi Ma, Xiaoyu Lin, Majed El Helou, Sabine Süsstrunk ·

Following the performance breakthrough of denoising networks, improvements have come chiefly through novel architecture designs and increased depth. While novel denoising networks were designed for real images coming from different distributions, or for specific applications, comparatively small improvement was achieved on Gaussian denoising... The denoising solutions suffer from epistemic uncertainty that can limit further advancements. This uncertainty is traditionally mitigated through different ensemble approaches. However, such ensembles are prohibitively costly with deep networks, which are already large in size. Our work focuses on pushing the performance limits of state-of-the-art methods on Gaussian denoising. We propose a model-agnostic approach for reducing epistemic uncertainty while using only a single pretrained network. We achieve this by tapping into the epistemic uncertainty through augmented and frequency-manipulated images to obtain denoised images with varying error. We propose an ensemble method with two decoupled attention paths, over the pixel domain and over that of our different manipulations, to learn the final fusion. Our results significantly improve over the state-of-the-art baselines and across varying noise levels. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here