Deep IV: A Flexible Approach for Counterfactual Prediction

Counterfactual prediction requires understanding causal relationships between so-called treatment and outcome variables. This paper provides a recipe for augmenting deep learning methods to accurately characterize such relationships in the presence of instrument variables (IVs) – sources of treatment randomization that are conditionally independent from the outcomes. Our IV specification resolves into two prediction tasks that can be solved with deep neural nets: a first-stage network for treatment prediction and a second-stage network whose loss function involves integration over the conditional treatment distribution. This Deep IV framework allows us to take advantage of off-the-shelf supervised learning techniques to estimate causal effects by adapting the loss function. Experiments show that it outperforms existing machine learning approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here