Deep IV: A Flexible Approach for Counterfactual Prediction

Counterfactual prediction requires understanding causal relationships between so-called treatment and outcome variables. This paper provides a recipe for augmenting deep learning methods to accurately characterize such relationships in the presence of instrument variables (IVs) – sources of treatment randomization that are conditionally independent from the outcomes... (read more)

PDF Abstract

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet