Deep Kernel Learning for Mortality Prediction in the Face of Temporal Shift

1 Dec 2022  ·  Miguel Rios, Ameen Abu-Hanna ·

Neural models, with their ability to provide novel representations, have shown promising results in prediction tasks in healthcare. However, patient demographics, medical technology, and quality of care change over time. This often leads to drop in the performance of neural models for prospective patients, especially in terms of their calibration. The deep kernel learning (DKL) framework may be robust to such changes as it combines neural models with Gaussian processes, which are aware of prediction uncertainty. Our hypothesis is that out-of-distribution test points will result in probabilities closer to the global mean and hence prevent overconfident predictions. This in turn, we hypothesise, will result in better calibration on prospective data. This paper investigates DKL's behaviour when facing a temporal shift, which was naturally introduced when an information system that feeds a cohort database was changed. We compare DKL's performance to that of a neural baseline based on recurrent neural networks. We show that DKL indeed produced superior calibrated predictions. We also confirm that the DKL's predictions were indeed less sharp. In addition, DKL's discrimination ability was even improved: its AUC was 0.746 (+- 0.014 std), compared to 0.739 (+- 0.028 std) for the baseline. The paper demonstrated the importance of including uncertainty in neural computing, especially for their prospective use.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods