Deep Learning-Based Perceptual Stimulus Encoder for Bionic Vision

10 Mar 2022  ·  Lucas Relic, BoWen Zhang, Yi-Lin Tuan, Michael Beyeler ·

Retinal implants have the potential to treat incurable blindness, yet the quality of the artificial vision they produce is still rudimentary. An outstanding challenge is identifying electrode activation patterns that lead to intelligible visual percepts (phosphenes). Here we propose a PSE based on CNN that is trained in an end-to-end fashion to predict the electrode activation patterns required to produce a desired visual percept. We demonstrate the effectiveness of the encoder on MNIST using a psychophysically validated phosphene model tailored to individual retinal implant users. The present work constitutes an essential first step towards improving the quality of the artificial vision provided by retinal implants.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here