Paper

Deep Learning for Insider Threat Detection: Review, Challenges and Opportunities

Insider threats, as one type of the most challenging threats in cyberspace, usually cause significant loss to organizations. While the problem of insider threat detection has been studied for a long time in both security and data mining communities, the traditional machine learning based detection approaches, which heavily rely on feature engineering, are hard to accurately capture the behavior difference between insiders and normal users due to various challenges related to the characteristics of underlying data, such as high-dimensionality, complexity, heterogeneity, sparsity, lack of labeled insider threats, and the subtle and adaptive nature of insider threats... (read more)

Results in Papers With Code
(↓ scroll down to see all results)