Deep Learning for Semantic Composition

ACL 2017  ·  Xiaodan Zhu, Edward Grefenstette ·

Learning representation to model the meaning of text has been a core problem in NLP. The last several years have seen extensive interests on distributional approaches, in which text spans of different granularities are encoded as vectors of numerical values. If properly learned, such representation has showed to achieve the state-of-the-art performance on a wide range of NLP problems.In this tutorial, we will cover the fundamentals and the state-of-the-art research on neural network-based modeling for semantic composition, which aims to learn distributed representation for different granularities of text, e.g., phrases, sentences, or even documents, from their sub-component meaning representation, e.g., word embedding.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here