Deep Learning Techniques for Compressive Sensing-Based Reconstruction and Inference -- A Ubiquitous Systems Perspective

26 May 2021  ·  Alina L. Machidon, Veljko Pejovic ·

Compressive sensing (CS) is a mathematically elegant tool for reducing the sampling rate, potentially bringing context-awareness to a wider range of devices. Nevertheless, practical issues with the sampling and reconstruction algorithms prevent further proliferation of CS in real world domains, especially among heterogeneous ubiquitous devices. Deep learning (DL) naturally complements CS for adapting the sampling matrix, reconstructing the signal, and learning form the compressed samples. While the CS-DL integration has received substantial research interest recently, it has not yet been thoroughly surveyed, nor has the light been shed on practical issues towards bringing the CS-DL to real world implementations in the ubicomp domain. In this paper we identify main possible ways in which CS and DL can interplay, extract key ideas for making CS-DL efficient, identify major trends in CS-DL research space, and derive guidelines for future evolution of CS-DL within the ubicomp domain.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here