Deep-Learning the Landscape

8 Jun 2017  ·  Yang-Hui He ·

We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that even a relatively simple neural network can learn many significant quantities to astounding accuracy in a matter of minutes and can also predict hithertofore unencountered results. This paradigm should prove a valuable tool in various investigations in landscapes in physics as well as pure mathematics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here