Deep Manifold Transformation for Protein Representation Learning

12 Jan 2024  ·  Bozhen Hu, Zelin Zang, Cheng Tan, Stan Z. Li ·

Protein representation learning is critical in various tasks in biology, such as drug design and protein structure or function prediction, which has primarily benefited from protein language models and graph neural networks. These models can capture intrinsic patterns from protein sequences and structures through masking and task-related losses. However, the learned protein representations are usually not well optimized, leading to performance degradation due to limited data, difficulty adapting to new tasks, etc. To address this, we propose a new \underline{d}eep \underline{m}anifold \underline{t}ransformation approach for universal \underline{p}rotein \underline{r}epresentation \underline{l}earning (DMTPRL). It employs manifold learning strategies to improve the quality and adaptability of the learned embeddings. Specifically, we apply a novel manifold learning loss during training based on the graph inter-node similarity. Our proposed DMTPRL method outperforms state-of-the-art baselines on diverse downstream tasks across popular datasets. This validates our approach for learning universal and robust protein representations. We promise to release the code after acceptance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here