Deep Reinforcement Learning for Optimizing RIS-Assisted HD-FD Wireless Systems

10 Oct 2021  ·  Alice Faisal, Ibrahim Al-Nahhal, Octavia A. Dobre, Telex M. N. Ngatched ·

This letter investigates the reconfigurable intelligent surface (RIS)-assisted multiple-input single-output (MISO) wireless system, where both half-duplex (HD) and full-duplex (FD) operating modes are considered together, for the first time in the literature. The goal is to maximize the rate by optimizing the RIS phase shifts. A novel deep reinforcement learning (DRL) algorithm is proposed to solve the formulated non-convex optimization problem. The complexity analysis and Monte Carlo simulations illustrate that the proposed DRL algorithm significantly improves the rate compared to the non-optimized scenario in both HD and FD operating modes using a single parameter setting. Besides, it significantly reduces the computational complexity of the downlink HD MISO system and improves the achievable rate with a reduced number of steps per episode compared to the conventional DRL algorithm.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here