Deep Reinforcement Learning for URLLC data management on top of scheduled eMBB traffic

2 Mar 2021  ·  Fabio Saggese, Luca Pasqualini, Marco Moretti, Andrea Abrardo ·

With the advent of 5G and the research into beyond 5G (B5G) networks, a novel and very relevant research issue is how to manage the coexistence of different types of traffic, each with very stringent but completely different requirements. In this paper we propose a deep reinforcement learning (DRL) algorithm to slice the available physical layer resources between ultra-reliable low-latency communications (URLLC) and enhanced Mobile BroadBand (eMBB) traffic. Specifically, in our setting the time-frequency resource grid is fully occupied by eMBB traffic and we train the DRL agent to employ proximal policy optimization (PPO), a state-of-the-art DRL algorithm, to dynamically allocate the incoming URLLC traffic by puncturing eMBB codewords. Assuming that each eMBB codeword can tolerate a certain limited amount of puncturing beyond which is in outage, we show that the policy devised by the DRL agent never violates the latency requirement of URLLC traffic and, at the same time, manages to keep the number of eMBB codewords in outage at minimum levels, when compared to other state-of-the-art schemes.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here