Deep Residual Echo Suppression and Noise Reduction: A Multi-Input FCRN Approach in a Hybrid Speech Enhancement System

6 Aug 2021  ·  Jan Franzen, Tim Fingscheidt ·

Deep neural network (DNN)-based approaches to acoustic echo cancellation (AEC) and hybrid speech enhancement systems have gained increasing attention recently, introducing significant performance improvements to this research field. Using the fully convolutional recurrent network (FCRN) architecture that is among state of the art topologies for noise reduction, we present a novel deep residual echo suppression and noise reduction with up to four input signals as part of a hybrid speech enhancement system with a linear frequency domain adaptive Kalman filter AEC. In an extensive ablation study, we reveal trade-offs with regard to echo suppression, noise reduction, and near-end speech quality, and provide surprising insights to the choice of the FCRN inputs: In contrast to often seen input combinations for this task, we propose not to use the loudspeaker reference signal, but the enhanced signal after AEC, the microphone signal, and the echo estimate, yielding improvements over previous approaches by more than 0.2 PESQ points.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here