Deep-RLS: A Model-Inspired Deep Learning Approach to Nonlinear PCA

15 Nov 2020  ·  Zahra Esmaeilbeig, Shahin Khobahi, Mojtaba Soltanalian ·

In this work, we consider the application of model-based deep learning in nonlinear principal component analysis (PCA). Inspired by the deep unfolding methodology, we propose a task-based deep learning approach, referred to as Deep-RLS, that unfolds the iterations of the well-known recursive least squares (RLS) algorithm into the layers of a deep neural network in order to perform nonlinear PCA. In particular, we formulate the nonlinear PCA for the blind source separation (BSS) problem and show through numerical analysis that Deep-RLS results in a significant improvement in the accuracy of recovering the source signals in BSS when compared to the traditional RLS algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods