Deep Spiking Neural Network: Energy Efficiency Through Time based Coding

ECCV 2020  ·  Bing Han, Kaushik Roy ·

Spiking Neural Networks (SNNs) are promising for enabling low-power event-driven data analytics. The best performing SNNs for image recognition tasks are obtained by converting a trained deep learning Analog Neural Network (ANN) composed of Rectified Linear Unit (ReLU) activation to SNN consisting of Integrate-and-Fire (IF) neurons with ""proper"" firing thresholds. However, this has come at the cost of accuracy loss and higher inference latency due to lack of a notion of time. In this work, we propose an ANN to SNN conversion methodology that uses a time-based coding scheme, named Temporal-Switch-Coding (TSC), and a corresponding TSC spiking neuron model. Each input image pixel is presented using two spikes and the timing between the two spiking instants is proportional to the pixel intensity. The real-valued ReLU activations in ANN are encoded using the spike-times of the TSC neurons in the converted TSC-SNN. At most two memory accesses and two addition operations are performed for each synapse during the whole inference, which significantly improves the SNN energy efficiency. We demonstrate the proposed TSC-SNN for VGG-16, ResNet-20 and ResNet-34 SNNs on datasets including CIFAR-10 (93.63% top-1), CIFAR-100 (70.97% top-1) and ImageNet (73.46% top-1 accuracy). It surpasses the best inference accuracy of the converted rate-encoded SNN with 7-14.5 times lesser inference latency, and 30-60 times fewer addition operations and memory accesses per inference across datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods