Deep Stable neural networks: large-width asymptotics and convergence rates

2 Aug 2021  ·  Stefano Favaro, Sandra Fortini, Stefano Peluchetti ·

In modern deep learning, there is a recent and growing literature on the interplay between large-width asymptotic properties of deep Gaussian neural networks (NNs), i.e. deep NNs with Gaussian-distributed weights, and Gaussian stochastic processes (SPs). Such an interplay has proved to be critical in Bayesian inference under Gaussian SP priors, kernel regression for infinitely wide deep NNs trained via gradient descent, and information propagation within infinitely wide NNs. Motivated by empirical analyses that show the potential of replacing Gaussian distributions with Stable distributions for the NN's weights, in this paper we present a rigorous analysis of the large-width asymptotic behaviour of (fully connected) feed-forward deep Stable NNs, i.e. deep NNs with Stable-distributed weights. We show that as the width goes to infinity jointly over the NN's layers, i.e. the ``joint growth" setting, a rescaled deep Stable NN converges weakly to a Stable SP whose distribution is characterized recursively through the NN's layers. Because of the non-triangular structure of the NN, this is a non-standard asymptotic problem, to which we propose an inductive approach of independent interest. Then, we establish sup-norm convergence rates of the rescaled deep Stable NN to the Stable SP, under the ``joint growth" and a ``sequential growth" of the width over the NN's layers. Such a result provides the difference between the ``joint growth" and the ``sequential growth" settings, showing that the former leads to a slower rate than the latter, depending on the depth of the layer and the number of inputs of the NN. Our work extends some recent results on infinitely wide limits for deep Gaussian NNs to the more general deep Stable NNs, providing the first result on convergence rates in the ``joint growth" setting.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here