DeepInit Phase Retrieval

16 Jul 2020  ·  Martin Reiche, Peter Jung ·

This paper shows how data-driven deep generative models can be utilized to solve challenging phase retrieval problems, in which one wants to reconstruct a signal from only few intensity measurements. Classical iterative algorithms are known to work well if initialized close to the optimum but otherwise suffer from non-convexity and often get stuck in local minima. We therefore propose DeepInit Phase Retrieval, which uses regularized gradient descent under a deep generative data prior to compute a trained initialization for a fast classical algorithm (e.g. the randomized Kaczmarz method). We empirically show that our hybrid approach is able to deliver very high reconstruction results at low sampling rates even when there is significant generator model error. Conceptually, learned initializations may therefore help to overcome the non-convexity of the problem by starting classical descent steps closer to the global optimum. Also, our idea demonstrates superior runtime performance over conventional gradient-based reconstruction methods. We evaluate our method for generic measurements and show empirically that it is also applicable to diffraction-type measurement models which are found in terahertz single-pixel phase retrieval.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here