DeepResp: Deep learning solution for respiration-induced B0 fluctuation artifacts in multi-slice GRE

Respiration-induced B$_0$ fluctuation corrupts MRI images by inducing phase errors in k-space. A few approaches such as navigator have been proposed to correct for the artifacts at the expense of sequence modification. In this study, a new deep learning method, which is referred to as DeepResp, is proposed for reducing the respiration-artifacts in multi-slice gradient echo (GRE) images. DeepResp is designed to extract the respiration-induced phase errors from a complex image using deep neural networks. Then, the network-generated phase errors are applied to the k-space data, creating an artifact-corrected image. For network training, the computer-simulated images were generated using artifact-free images and respiration data. When evaluated, both simulated images and in-vivo images of two different breathing conditions (deep breathing and natural breathing) show improvements (simulation: normalized root-mean-square error (NRMSE) from 7.8% to 1.3%; structural similarity (SSIM) from 0.88 to 0.99; ghost-to-signal-ratio (GSR) from 7.9% to 0.6%; deep breathing: NRMSE from 13.9% to 5.8%; SSIM from 0.86 to 0.95; GSR 20.2% to 5.7%; natural breathing: NRMSE from 5.2% to 4.0%; SSIM from 0.94 to 0.97; GSR 5.7% to 2.8%). Our approach does not require any modification of the sequence or additional hardware, and may therefore find useful applications. Furthermore, the deep neural networks extract respiration-induced phase errors, which is more interpretable and reliable than results of end-to-end trained networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here