DeepTopPush: Simple and Scalable Method for Accuracy at the Top

22 Jun 2020  ·  Václav Mácha, Lukáš Adam, Václav Šmídl ·

Accuracy at the top is a special class of binary classification problems where the performance is evaluated only on a small number of relevant (top) samples. Applications include information retrieval systems or processes with manual (expensive) postprocessing. This leads to minimizing the number of irrelevant samples above a threshold. We consider classifiers in the form of an arbitrary (deep) network and propose a new method DeepTopPush for minimizing the loss function at the top. Since the threshold depends on all samples, the problem is non-decomposable. We modify the stochastic gradient descent to handle the non-decomposability in an end-to-end training manner and propose a way to estimate the threshold only from values on the current minibatch and one delayed value. We demonstrate the excellent performance of DeepTopPush on visual recognition datasets and two real-world applications. The first one selects a small number of molecules for further drug testing. The second one uses real malware data, where we detected 46\% malware at an extremely low false alarm rate of $10^{-5}$.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here