Defects Mitigation in Resistive Crossbars for Analog Vector Matrix Multiplication

17 Dec 2019  ·  Fan Zhang, Miao Hu ·

With storage and computation happening at the same place, computing in resistive crossbars minimizes data movement and avoids the memory bottleneck issue. It leads to ultra-high energy efficiency for data-intensive applications. However, defects in crossbars severely affect computing accuracy. Existing solutions, including re-training with defects and redundant designs, but they have limitations in practical implementations. In this work, we introduce row shuffling and output compensation to mitigate defects without re-training or redundant resistive crossbars. We also analyzed the coupling effects of defects and circuit parasitics. Moreover, We study different combinations of methods to achieve the best trade-off between cost and performance. Our proposed methods could rescue up to 10% of defects in ResNet-20 application without performance degradation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here