Defend Deep Neural Networks Against Adversarial Examples via Fixed and Dynamic Quantized Activation Functions

Recent studies have shown that deep neural networks (DNNs) are vulnerable to adversarial attacks. To this end, many defense approaches that attempt to improve the robustness of DNNs have been proposed... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet