Defense of Word-level Adversarial Attacks via Random Substitution Encoding

1 May 2020  ·  Zhao-Yang Wang, Hongtao Wang ·

The adversarial attacks against deep neural networks on computer vision tasks have spawned many new technologies that help protect models from avoiding false predictions. Recently, word-level adversarial attacks on deep models of Natural Language Processing (NLP) tasks have also demonstrated strong power, e.g., fooling a sentiment classification neural network to make wrong decisions. Unfortunately, few previous literatures have discussed the defense of such word-level synonym substitution based attacks since they are hard to be perceived and detected. In this paper, we shed light on this problem and propose a novel defense framework called Random Substitution Encoding (RSE), which introduces a random substitution encoder into the training process of original neural networks. Extensive experiments on text classification tasks demonstrate the effectiveness of our framework on defense of word-level adversarial attacks, under various base and attack models.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here