Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA

10 Mar 2023  ·  Yuchen Zhou, Yuxin Chen ·

This paper is concerned with estimating the column subspace of a low-rank matrix $\boldsymbol{X}^\star \in \mathbb{R}^{n_1\times n_2}$ from contaminated data. How to obtain optimal statistical accuracy while accommodating the widest range of signal-to-noise ratios (SNRs) becomes particularly challenging in the presence of heteroskedastic noise and unbalanced dimensionality (i.e., $n_2\gg n_1$). While the state-of-the-art algorithm $\textsf{HeteroPCA}$ emerges as a powerful solution for solving this problem, it suffers from "the curse of ill-conditioning," namely, its performance degrades as the condition number of $\boldsymbol{X}^\star$ grows. In order to overcome this critical issue without compromising the range of allowable SNRs, we propose a novel algorithm, called $\textsf{Deflated-HeteroPCA}$, that achieves near-optimal and condition-number-free theoretical guarantees in terms of both $\ell_2$ and $\ell_{2,\infty}$ statistical accuracy. The proposed algorithm divides the spectrum of $\boldsymbol{X}^\star$ into well-conditioned and mutually well-separated subblocks, and applies $\textsf{HeteroPCA}$ to conquer each subblock successively. Further, an application of our algorithm and theory to two canonical examples -- the factor model and tensor PCA -- leads to remarkable improvement for each application.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods