Dempsterian-Shaferian Belief Network From Data

6 Jun 2018  ·  Mieczysław A. Kłopotek ·

Shenoy and Shafer {Shenoy:90} demonstrated that both for Dempster-Shafer Theory and probability theory there exists a possibility to calculate efficiently marginals of joint belief distributions (by so-called local computations) provided that the joint distribution can be decomposed (factorized) into a belief network. A number of algorithms exists for decomposition of probabilistic joint belief distribution into a bayesian (belief) network from data... For example Spirtes, Glymour and Schein{Spirtes:90b} formulated a Conjecture that a direct dependence test and a head-to-head meeting test would suffice to construe bayesian network from data in such a way that Pearl's concept of d-separation {Geiger:90} applies. This paper is intended to transfer Spirtes, Glymour and Scheines {Spirtes:90b} approach onto the ground of the Dempster-Shafer Theory (DST). For this purpose, a frequentionistic interpretation of the DST developed in {Klopotek:93b} is exploited. A special notion of conditionality for DST is introduced and demonstrated to behave with respect to Pearl's d-separation {Geiger:90} much the same way as conditional probability (though some differences like non-uniqueness are evident). Based on this, an algorithm analogous to that from {Spirtes:90b} is developed. The notion of a partially oriented graph (pog) is introduced and within this graph the notion of p-d-separation is defined. If direct dependence test and head-to-head meeting test are used to orient the pog then its p-d-separation is shown to be equivalent to the Pearl's d-separation for any compatible dag. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here