Dependency Tree Annotation with Mechanical Turk

WS 2019 Stephen Tratz

Crowdsourcing is frequently employed to quickly and inexpensively obtain valuable linguistic annotations but is rarely used for parsing, likely due to the perceived difficulty of the task and the limited training of the available workers. This paper presents what is, to the best of our knowledge, the first published use of Mechanical Turk (or similar platform) to crowdsource parse trees... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet