Depth Degeneracy in Neural Networks: Vanishing Angles in Fully Connected ReLU Networks on Initialization

20 Feb 2023  ·  Cameron Jakub, Mihai Nica ·

Despite remarkable performance on a variety of tasks, many properties of deep neural networks are not yet theoretically understood. One such mystery is the depth degeneracy phenomenon: the deeper you make your network, the closer your network is to a constant function on initialization. In this paper, we examine the evolution of the angle between two inputs to a ReLU neural network as a function of the number of layers. By using combinatorial expansions, we find precise formulas for how fast this angle goes to zero as depth increases. These formulas capture microscopic fluctuations that are not visible in the popular framework of infinite width limits, and leads to qualitatively different predictions. We validate our theoretical results with Monte Carlo experiments and show that our results accurately approximate finite network behaviour. The formulas are given in terms of the mixed moments of correlated Gaussians passed through the ReLU function. We also find a surprising combinatorial connection between these mixed moments and the Bessel numbers that allows us to explicitly evaluate these moments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here