Deriving star cluster parameters with convolutional neural networks. II. Extinction and cluster/background classification

22 Nov 2019  ·  J. Bialopetravičius, D. Narbutis, V. Vansevičius ·

Context. Convolutional neural networks (CNNs) have been established as the go-to method for fast object detection and classification on natural images. This opens the door for astrophysical parameter inference on the exponentially increasing amount of sky survey data. Until now, star cluster analysis was based on integral or resolved stellar photometry, which limits the amount of information that can be extracted from individual pixels of cluster images. Aims. We aim to create a CNN capable of inferring star cluster evolutionary, structural, and environmental parameters from multi-band images, as well to demonstrate its capabilities in discriminating genuine clusters from galactic stellar backgrounds. Methods. A CNN based on the deep residual network (ResNet) architecture was created and trained to infer cluster ages, masses, sizes, and extinctions, with respect to the degeneracies between them. Mock clusters placed on M83 Hubble Space Telescope (HST) images utilizing three photometric passbands (F336W, F438W, and F814W) were used. The CNN is also capable of predicting the likelihood of a cluster's presence in an image, as well as quantifying its visibility (signal-to-noise). Results. The CNN was tested on mock images of artificial clusters and has demonstrated reliable inference results for clusters of ages $\lesssim$100 Myr, extinctions $A_V$ between 0 and 3 mag, masses between $3\times10^3$ and $3\times10^5$ ${\rm M_\odot}$, and sizes between 0.04 and 0.4 arcsec at the distance of the M83 galaxy. Real M83 galaxy cluster parameter inference tests were performed with objects taken from previous studies and have demonstrated consistent results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here