Design a Metric Robust to Complicated High Dimensional Noise for Efficient Manifold Denoising

8 Jan 2024  ·  Hau-Tieng Wu ·

In this manuscript, we propose an efficient manifold denoiser based on landmark diffusion and optimal shrinkage under the complicated high dimensional noise and compact manifold setup. It is flexible to handle several setups, including the high ambient space dimension with a manifold embedding that occupies a subspace of high or low dimensions, and the noise could be colored and dependent. A systematic comparison with other existing algorithms on both simulated and real datasets is provided. This manuscript is mainly algorithmic and we report several existing tools and numerical results. Theoretical guarantees and more comparisons will be reported in the official paper of this manuscript.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods