Designing for the Long Tail of Machine Learning

21 Jan 2020  ·  Martin Lindvall, Jesper Molin ·

Recent technical advances has made machine learning (ML) a promising component to include in end user facing systems. However, user experience (UX) practitioners face challenges in relating ML to existing user-centered design processes and how to navigate the possibilities and constraints of this design space. Drawing on our own experience, we characterize designing within this space as navigating trade-offs between data gathering, model development and designing valuable interactions for a given model performance. We suggest that the theoretical description of how machine learning performance scales with training data can guide designers in these trade-offs as well as having implications for prototyping. We exemplify the learning curve's usage by arguing that a useful pattern is to design an initial system in a bootstrap phase that aims to exploit the training effect of data collected at increasing orders of magnitude.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here