DESPOT: Online POMDP Planning with Regularization

NeurIPS 2013  ·  Nan Ye, Adhiraj Somani, David Hsu, Wee Sun Lee ·

The partially observable Markov decision process (POMDP) provides a principled general framework for planning under uncertainty, but solving POMDPs optimally is computationally intractable, due to the "curse of dimensionality" and the "curse of history". To overcome these challenges, we introduce the Determinized Sparse Partially Observable Tree (DESPOT), a sparse approximation of the standard belief tree, for online planning under uncertainty. A DESPOT focuses online planning on a set of randomly sampled scenarios and compactly captures the "execution" of all policies under these scenarios. We show that the best policy obtained from a DESPOT is near-optimal, with a regret bound that depends on the representation size of the optimal policy. Leveraging this result, we give an anytime online planning algorithm, which searches a DESPOT for a policy that optimizes a regularized objective function. Regularization balances the estimated value of a policy under the sampled scenarios and the policy size, thus avoiding overfitting. The algorithm demonstrates strong experimental results, compared with some of the best online POMDP algorithms available. It has also been incorporated into an autonomous driving system for real-time vehicle control. The source code for the algorithm is available online.

PDF Abstract NeurIPS 2013 PDF NeurIPS 2013 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here