Assessing Electricity Service Unfairness with Transfer Counterfactual Learning

5 Oct 2023  ·  Song Wei, Xiangrui Kong, Alinson Santos Xavier, Shixiang Zhu, Yao Xie, Feng Qiu ·

Energy justice is a growing area of interest in interdisciplinary energy research. However, identifying systematic biases in the energy sector remains challenging due to confounding variables, intricate heterogeneity in counterfactual effects, and limited data availability. First, this paper demonstrates how one can evaluate counterfactual unfairness in a power system by analyzing the average causal effect of a specific protected attribute. Subsequently, we use subgroup analysis to handle model heterogeneity and introduce a novel method for estimating counterfactual unfairness based on transfer learning, which helps to alleviate the data scarcity in each subgroup. In our numerical analysis, we apply our method to a unique large-scale customer-level power outage data set and investigate the counterfactual effect of demographic factors, such as income and age of the population, on power outage durations. Our results indicate that low-income and elderly-populated areas consistently experience longer power outages under both daily and post-disaster operations, and such discrimination is exacerbated under severe conditions. These findings suggest a widespread, systematic issue of injustice in the power service systems and emphasize the necessity for focused interventions in disadvantaged communities.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here