Detecting Satire in the News with Machine Learning

1 Oct 2018 Andreas Stöckl

We built models with Logistic Regression and linear Support Vector Machines on a large dataset consisting of regular news articles and news from satirical websites, and showed that such linear classifiers on a corpus with about 60,000 articles can perform with a precision of 98.7% and a recall of 95.2% on a random test set of the news. On the other hand, when testing the classifier on "publication sources" which are completely unknown during training, only an accuracy of 88.2% and an F1-score of 76.3% are achieved... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper