Detecting Small, Densely Distributed Objects with Filter-Amplifier Networks and Loss Boosting

21 Feb 2018  ·  Zhenhua Chen, David Crandall, Robert Templeman ·

Detecting small, densely distributed objects is a significant challenge: small objects often contain less distinctive information compared to larger ones, and finer-grained precision of bounding box boundaries are required. In this paper, we propose two techniques for addressing this problem. First, we estimate the likelihood that each pixel belongs to an object boundary rather than predicting coordinates of bounding boxes (as YOLO, Faster-RCNN and SSD do), by proposing a new architecture called Filter-Amplifier Networks (FANs). Second, we introduce a technique called Loss Boosting (LB) which attempts to soften the loss imbalance problem on each image. We test our algorithm on the problem of detecting electrical components on a new, realistic, diverse dataset of printed circuit boards (PCBs), as well as the problem of detecting vehicles in the Vehicle Detection in Aerial Imagery (VEDAI) dataset. Experiments show that our method works significantly better than current state-of-the-art algorithms with respect to accuracy, recall and average IoU.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here