Detecting Suicidal Ideation in Chinese Microblogs with Psychological Lexicons

4 Nov 2014  ·  Xiaolei Huang, Lei Zhang, Tianli Liu, David Chiu, Tingshao Zhu, Xin Li ·

Suicide is among the leading causes of death in China. However, technical approaches toward preventing suicide are challenging and remaining under development. Recently, several actual suicidal cases were preceded by users who posted microblogs with suicidal ideation to Sina Weibo, a Chinese social media network akin to Twitter. It would therefore be desirable to detect suicidal ideations from microblogs in real-time, and immediately alert appropriate support groups, which may lead to successful prevention. In this paper, we propose a real-time suicidal ideation detection system deployed over Weibo, using machine learning and known psychological techniques. Currently, we have identified 53 known suicidal cases who posted suicide notes on Weibo prior to their deaths.We explore linguistic features of these known cases using a psychological lexicon dictionary, and train an effective suicidal Weibo post detection model. 6714 tagged posts and several classifiers are used to verify the model. By combining both machine learning and psychological knowledge, SVM classifier has the best performance of different classifiers, yielding an F-measure of 68:3%, a Precision of 78:9%, and a Recall of 60:3%.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here