Deterministic Bayesian Information Fusion and the Analysis of its Performance

15 Nov 2013 Gaurav Thakur

This paper develops a mathematical and computational framework for analyzing the expected performance of Bayesian data fusion, or joint statistical inference, within a sensor network. We use variational techniques to obtain the posterior expectation as the optimal fusion rule under a deterministic constraint and a quadratic cost, and study the smoothness and other properties of its classification performance... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet