Developing All-Skyrmion Spiking Neural Network

8 May 2017  ·  Zhezhi He, Deliang Fan ·

In this work, we have proposed a revolutionary neuromorphic computing methodology to implement All-Skyrmion Spiking Neural Network (AS-SNN). Such proposed methodology is based on our finding that skyrmion is a topological stable spin texture and its spatiotemporal motion along the magnetic nano-track intuitively interprets the pulse signal transmission between two interconnected neurons. In such design, spike train in SNN could be encoded as particle-like skyrmion train and further processed by the proposed skyrmion-synapse and skyrmion-neuron within the same magnetic nano-track to generate output skyrmion as post-spike. Then, both pre-neuron spikes and post-neuron spikes are encoded as particle-like skyrmions without conversion between charge and spin signals, which fundamentally differentiates our proposed design from other hybrid Spin-CMOS designs. The system level simulation shows 87.1% inference accuracy for handwritten digit recognition task, while the energy dissipation is ~1 fJ/per spike which is 3 orders smaller in comparison with CMOS based IBM TrueNorth system.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here