Development of Sleep State Trend (SST), a bedside measure of neonatal sleep state fluctuations based on single EEG channels

Objective: To develop and validate an automated method for bedside monitoring of sleep state fluctuations in neonatal intensive care units. Methods: A deep learning -based algorithm was designed and trained using 53 EEG recordings from a long-term (a)EEG monitoring in 30 near-term neonates. The results were validated using an external dataset from 30 polysomnography recordings. In addition to training and validating a single EEG channel quiet sleep detector, we constructed Sleep State Trend (SST), a bedside-ready means for visualizing classifier outputs. Results: The accuracy of quiet sleep detection in the training data was 90%, and the accuracy was comparable (85-86%) in all bipolar derivations available from the 4-electrode recordings. The algorithm generalized well to an external dataset, showing 81% overall accuracy despite different signal derivations. SST allowed an intuitive, clear visualization of the classifier output. Conclusions: Fluctuations in sleep states can be detected at high fidelity from a single EEG channel, and the results can be visualized as a transparent and intuitive trend in the bedside monitors. Significance: The Sleep State Trend (SST) may provide caregivers a real-time view of sleep state fluctuations and its cyclicity.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here