Diagonal Nonlinear Transformations Preserve Structure in Covariance and Precision Matrices

8 Jul 2021  ·  Rebecca E Morrison, Ricardo Baptista, Estelle L Basor ·

For a multivariate normal distribution, the sparsity of the covariance and precision matrices encodes complete information about independence and conditional independence properties. For general distributions, the covariance and precision matrices reveal correlations and so-called partial correlations between variables, but these do not, in general, have any correspondence with respect to independence properties. In this paper, we prove that, for a certain class of non-Gaussian distributions, these correspondences still hold, exactly for the covariance and approximately for the precision. The distributions -- sometimes referred to as "nonparanormal" -- are given by diagonal transformations of multivariate normal random variables. We provide several analytic and numerical examples illustrating these results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here