Dialect Clustering with Character-Based Metrics: in Search of the Boundary of Language and Dialect

LREC 2020 Yo SatoKevin Heffernan

We present in this work a universal, character-based method for representing sentences so that one can thereby calculate the distance between any two sentence pair. With a small alphabet, it can function as a proxy of phonemes, and as one of its main uses, we carry out dialect clustering: cluster a dialect/sub-language mixed corpus into sub-groups and see if they coincide with the conventional boundaries of dialects and sub-languages... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet