Differentiable bit-rate estimation for neural-based video codec enhancement

24 Jan 2023  ·  Amir Said, Manish Kumar Singh, Reza Pourreza ·

Neural networks (NN) can improve standard video compression by pre- and post-processing the encoded video. For optimal NN training, the standard codec needs to be replaced with a codec proxy that can provide derivatives of estimated bit-rate and distortion, which are used for gradient back-propagation. Since entropy coding of standard codecs is designed to take into account non-linear dependencies between transform coefficients, bit-rates cannot be well approximated with simple per-coefficient estimators. This paper presents a new approach for bit-rate estimation that is similar to the type employed in training end-to-end neural codecs, and able to efficiently take into account those statistical dependencies. It is defined from a mathematical model that provides closed-form formulas for the estimates and their gradients, reducing the computational complexity. Experimental results demonstrate the method's accuracy in estimating HEVC/H.265 codec bit-rates.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here