Differentiable Joint Pruning and Quantization for Hardware Efficiency

ECCV 2020  ·  Ying Wang, Yadong Lu, Tijmen Blankevoort ·

We present a differentiable joint pruning and quantization (DJPQ) scheme. We frame neural network compression as a joint gradient-based optimization problem, trading off between model pruning and quantization automatically for hardware efficiency. DJPQ incorporates variational information bottleneck based structured pruning and mixed-bit precision quantization into a single differentiable loss function. In contrast to previous works which consider pruning and quantization separately, our method enables users to find the optimal trade-off between both in a single training procedure. To utilize the method for more efficient hardware inference, we extend DJPQ to integrate structured pruning with power-of-two bit-restricted quantization. We show that DJPQ significantly reduces the number of Bit-Operations (BOPs) for several networks while maintaining the top-1 accuracy of original floating-point models (e.g., 53x BOPs reduction in ResNet18 on ImageNet, 43x in MobileNetV2). Compared to the conventional two-stage approach, which optimizes pruning and quantization independently, our scheme outperforms in terms of both accuracy and BOPs. Even when considering bit-restricted quantization, DJPQ achieves larger compression ratios and better accuracy than the two-stage approach.

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods