Differentially Private Label Protection in Split Learning

4 Mar 2022  ·  Xin Yang, Jiankai Sun, Yuanshun Yao, Junyuan Xie, Chong Wang ·

Split learning is a distributed training framework that allows multiple parties to jointly train a machine learning model over vertically partitioned data (partitioned by attributes). The idea is that only intermediate computation results, rather than private features and labels, are shared between parties so that raw training data remains private. Nevertheless, recent works showed that the plaintext implementation of split learning suffers from severe privacy risks that a semi-honest adversary can easily reconstruct labels. In this work, we propose \textsf{TPSL} (Transcript Private Split Learning), a generic gradient perturbation based split learning framework that provides provable differential privacy guarantee. Differential privacy is enforced on not only the model weights, but also the communicated messages in the distributed computation setting. Our experiments on large-scale real-world datasets demonstrate the robustness and effectiveness of \textsf{TPSL} against label leakage attacks. We also find that \textsf{TPSL} have a better utility-privacy trade-off than baselines.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here