Dimension Reduction in Contextual Online Learning via Nonparametric Variable Selection

17 Sep 2020  ·  Wenhao Li, Ningyuan Chen, L. Jeff Hong ·

We consider a contextual online learning (multi-armed bandit) problem with high-dimensional covariate $\mathbf{x}$ and decision $\mathbf{y}$. The reward function to learn, $f(\mathbf{x},\mathbf{y})$, does not have a particular parametric form. The literature has shown that the optimal regret is $\tilde{O}(T^{(d_x+d_y+1)/(d_x+d_y+2)})$, where $d_x$ and $d_y$ are the dimensions of $\mathbf x$ and $\mathbf y$, and thus it suffers from the curse of dimensionality. In many applications, only a small subset of variables in the covariate affect the value of $f$, which is referred to as \textit{sparsity} in statistics. To take advantage of the sparsity structure of the covariate, we propose a variable selection algorithm called \textit{BV-LASSO}, which incorporates novel ideas such as binning and voting to apply LASSO to nonparametric settings. Our algorithm achieves the regret $\tilde{O}(T^{(d_x^*+d_y+1)/(d_x^*+d_y+2)})$, where $d_x^*$ is the effective covariate dimension. The regret matches the optimal regret when the covariate is $d^*_x$-dimensional and thus cannot be improved. Our algorithm may serve as a general recipe to achieve dimension reduction via variable selection in nonparametric settings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here